

Intel® Ethernet SFP+ Optics

Intel® Ethernet SFP+ SR, SRX (extended temp), and LR Optics, offer dependable interoperability and consistent performance across the network when used with Intel® Ethernet 500 and 700 Series Network Adapters

Key Features

- Hot-pluggable SFP+ MSA compliant module
- SR and LR support 1GbE and 10GbE
- SRX (extended temperature) supports 10GbE only
- Duplex LC connector
- Built-in digital diagnostic functions
- RoHS-6 compliant (lead-free)

Overview

For customers looking for Ethernet connections over 15 meters, Intel® Ethernet SFP+ Optics can extend the reach to 300 meters or longer. These optical modules support both short range and long range distances with 10 Gigabit Intel® Ethernet Network Adapters.

The flexibility provided through reach and range enables customers to create networking configurations that best meet the needs of their data center environment. Other installation benefits include: Smaller physical dimensions, use less power, tighter bend radius, lighter weight, and have a longer reach compared to copper media options.

Fiber optics are also more immune to harsh environmental factors. The light used for data transmission does not carry an electrical current so it cannot be impacted by electrical transmissions or radio frequency interference. And, light has a superior signal strength that is near impervious to unwanted network taps.

10 Gigabit Intel® Ethernet Network Adapters with SFP+ connectivity are also the most scalable – providing more secure connections for virtualization, flexibility for LAN and SAN networking, and proven reliable performance. Other use cases include connecting servers to End of Row (EoR) and Top of Rack (ToR) switches.

GENERAL SPECIFICATIONS

Network Standards Physical Layer Interface

SR • 1000BASE-SX 1GbE • 10GBASE-SR 10GbE

SRX • 10GBASE-SR 10GbE

LR • 1000BASE-LX 1GbE • 10GBASE-LR 10GbE

SFP+ Module Specifications

• Electrical interface: SFF-8431 Rev 4.1 • I²C Register interface: SFF-8472 Rev 10.4

• Mechanical: SFF-8432 Rev 5.0

SR OPTICAL CHARACTERISTICS

Optical Characteristics for RS0 = HIGH (10 Gb Operation) (T_{OP} = 0 °C to 70 °C, V_{CC} =3.14 Vdc to 3.46 Vdc)

Symbol	Min	Тур	Max	Unit	Note
P _{OMA}		-1.5	-1	dBm	1
P _{AVE}	-5		860	dBm	2
λ	840	850	0.45	nm	1
$\Delta \lambda_{rms}$				dB	1
ER	3.0	5.5	3.9	dB	
TDP			-30	dB	
P _{OFF}				dBm	
Tx		Per IEEE 8	302.3-2008 Requ	irements	
<4.5 μm			30		
<19 μm	86			- %	3
RIN ₁₂ OMA			-128	dB/Hz	
R _{SENS1}			-11.1	dBm	
R _{SENS2}			-7.5	dBm	
P _{MAX}	+0.5			dBm	
λ _C	840		860	nm	
R _{rx}			-12	dB	
LOS _D			-14	dBm	
LOS _A	-30	-23		dBm	
	0.5			dB	
	P_{OMA} P_{AVE} λ $\Delta \lambda_{rms}$ ER TDP P_{OFF} Tx $<4.5 \mu m$ $<19 \mu m$ $RIN_{12}OMA$ R_{SENS1} R_{SENS2} P_{MAX} λ_{C} R_{rx} LOS_{D}	P _{OMA} P _{AVE} -5 λ 840 Δλ _{rms} ER 3.0 TDP P _{OFF} Tx <4.5 μm <19 μm 86 RIN ₁₂ OMA R _{SENS1} R _{SENS2} P _{MAX} +0.5 λ _C 840 R _{rx} LOS _D LOS _A -30	P _{OMA} -1.5 P _{AVE} -5 λ 840 850 Δλ _{rms} ER 3.0 5.5 TDP P _{OFF} Tx Per IEEE 8 <4.5 μm <19 μm 86 RIN ₁₂ OMA R _{SENS1} R _{SENS2} P _{MAX} +0.5 λ _C 840 R _{rx} LOS _D LOS _A -30 -23	P _{OMA} -1.5 -1 P _{AVE} -5 860 λ 840 850 0.45 Δλ _{rms} ER 3.0 5.5 3.9 TDP -30 P _{OFF} Tx Per IEEE 802.3-2008 Requ <4.5 μm 30 <19 μm 86 RIN ₁₂ OMA -128 R _{SENS1} -7.5 P _{MAX} +0.5 λ _C 840 860 R _{rx} -12 LOS _D -14 LOS _A -30 -23	POMA -1.5 -1 dBm PAVE -5 860 dBm λ 840 850 0.45 nm Δλ _{rms} dB dB ER 3.0 5.5 3.9 dB TDP -30 dB dBm dBm TM TM DP 4Bm DP DP 4Bm DP DP </td

Notes:

- 1. Per Tradeoff Table 52.8, IEEE 802.3-2008
- 2. Average Power figures are informative only, per IEEE802.3-2008.
- 3. Measured into Type A1a (50/125 μm multimode) fiber per ANSI/TIA/EIA-455-203-2.
- 4. Measured with worst ER; BER<10 $^{-12}$; $2^{31} 1$ PRBS.
- 5. Per IEEE 802.3-2008.

SR OPTICAL CHARACTERISTIC	S (CONTINUED)					
Parameter	Symbol	Min	Тур	Max	Unit	Note
Bit Rate (RSO = LOW)	BR		1.25		Gb/s	1
Bit Rate (RSO = HIGH)	BR	9.95	10.3		Gb/s	2

Notes:

2. 10GBASE-SR/SW. Tested with a $2^{31} - 1$ PRBS. See note above for conditions.

arameter	Symbol	Maximum Sup	ported Distance	Units
		@ 1 Gb/s	@ 10 Gb/s	
350 nm OFL Band-width				
160 MHz-km	Lmax	220	26	
OM1 200 MHz-Km		275	33	m
400 MHz-Km		500	66	
OM2 500 MHz-Km	Lmax	550	82	m
OM3 2000 MHz-Km		>550	300	
-	160 MHz-km OM1 200 MHz-Km 400 MHz-Km OM2 500 MHz-Km	160 MHz-km OM1 200 MHz-Km 400 MHz-Km OM2 500 MHz-Km Lmax	160 MHz-km 220 OM1 200 MHz-Km 275 400 MHz-Km 500 OM2 500 MHz-Km Lmax 550	160 MHz-km 220 26 OM1 200 MHz-Km 275 33 400 MHz-Km 500 66 OM2 500 MHz-Km Lmax 550 82

SR ENVIRONMENTAL SPECIFICATIONS

850 nm SFP transceivers have a commercial operating temperature range from 0 °C to +70 °C case temperature

Parameter	Symbol	Min	Тур	Max	Units
Case Operating Temperature	T _{op}			70	°C
Storage Temperature	T _{sto}	-40		85	°C

^{1. 1000}BASE-SX. Tested with a $2^7 - 1$ PRBS. (Transceiver data rate selected through the 2-wire bus in accordance with SFF-8472 Rev. 10.3. Soft RS0 is set at Bit3, Byte 110, Address A2h. Soft RS0 default state on power up is 0 LOW, and the state is reset following a power cycle. Writing 1 HIGH selects max. data rate operation. Transceiver data rate is the logic OR of the input state of the RS0 pin and soft RS0 bit. Thus, if either the RS0 pin OR the soft RS0 bit is HIGH, then the selected data rate will be 9.95 and 10.3 Gb/s. Conversely, to select data rate 1.25 Gb/s, both the RS0 pin and the soft RS0 bit are set LOW.)

SRX OPTICAL CHARACTERISTICS

Optical Characteristics for RS0 = HIGH (10 Gb Operation) (T_{OP} = -5 °C to 85 °C, V_{CC} =3.14 Vdc to 3.46 Vdc)

Symbol	Min	Тур	Max	Unit	Note
P _{OMA}		-1.5	-1	dBm	1
P _{AVE}	-5		860	dBm	2
λ	840	850	0.45	nm	1
$\Delta \lambda_{rms}$				dB	1
ER	3.0	5.5	3.9	dB	
TDP			-30	dB	
P _{OFF}				dBm	
Tx _j		Per IEEE	802.3-2012 Requ	irements	
<4.5 μm			30		
<19 μm	86			- %	3
RIN ₁₂ OMA			-128	dB/Hz	
R _{SENS1}			-11.1	dBm	4
R _{SENS2}			-7.5	dBm	5
P _{MAX}	+0.5			dBm	
λ_{C}	840		860	nm	
R _{rx}			-12	dB	
LOS _D			-14	dBm	
LOS _A	-30	-23		dBm	
	P_{OMA} P_{AVE} λ $\Delta \lambda_{rms}$ ER TDP P_{OFF} Tx_j <4.5 μm <19 μm $RIN_{12}OMA$ R_{SENS1} R_{SENS2} P_{MAX} λ_{C} R_{rx} LOS_{D}	P _{OMA} P _{AVE} -5 λ 840 Δλ _{rms} ER 3.0 TDP P _{OFF} Tx _j <4.5 μm <19 μm 86 RIN ₁₂ OMA R _{SENS1} R _{SENS2} P _{MAX} +0.5 λ _C 840 R _{rx} LOS _D	P_{OMA} -1.5 P_{AVE} -5 $λ$ 840 850 $Δλ_{rms}$ ER 3.0 5.5 TDP P_{OFF} Tx_j Per IEEE 3 <4.5 μm <19 μm 86 RIN ₁₂ OMA R_{SENS1} R_{SENS2} P_{MAX} +0.5 $λ_C$ 840 R_{rx} LOS _D	P _{OMA} -1.5 -1 P _{AVE} -5 860 λ 840 850 0.45 Δλ _{rms} ER 3.0 5.5 3.9 TDP -30 P _{OFF} Tx _j Per IEEE 802.3-2012 Requ <4.5 μm 30 <19 μm 86 RIN ₁₂ OMA -128 R _{SENS1} -7.5 P _{MAX} +0.5 λ _C 840 860 R _{rx} -12 LOS _D -14	POMA -1.5 -1 dBm PAVE -5 860 dBm λ 840 850 0.45 nm Δλ _{rms} dB ER 3.0 5.5 3.9 dB TDP -30 dB POFF dBm dBm Tx _j Per IEEE 802.3-2012 Requirements <4.5 μm

Notes:

- 1. Per Tradeoff Table 52.8, IEEE 802.3-2012
- 2. Average Power figures are informative only, per IEEE802.3-2012.
- 3. Measured into Type A1a (50/125 μm multimode) fiber per ANSI/TIA/EIA-455-203-2.
- 4. Measured with worst ER; BER<10 $^{-12}$; $2^{31} 1$ PRBS.
- 5. Per IEEE 802.3-2012.

SRX OPTICAL CHARACTERISTICS (CONTINUED)						
Parameter	Symbol	Min	Тур	Max	Unit	Note
Bit Rate (RSO = LOW)	BR	9.95		10.5	Gb/s	1
Bit Rate (RSO = HIGH)	BER			10 ⁻¹²	Gb/s	2

Notes:

- ${\bf 1.\ 10GBASE\text{-}SR/SW.\ Contact\ your\ Intel\ Representative\ for\ higher\ data-rate\ support.}$
- 2. Tested Tested with a 2^{31} 1 PRBS. See note above for conditions.

SRX OPTI	SRX OPTICAL CHARACTERISTICS (CONTINUED)						
	Parameter	Symbol	Maximum Supported Distance	Units			
Fiber Type	850 nm OFL Band-width						
6.25 μm	160 MHz-km		26				
	OM1 200 MHz-Km	Lmax	33	m			
50 μm	400 MHz-Km		66				
	OM2 500 MHz-Km		82				
	OM3 2000 MHz-Km	Lmax	300	m			
	OM4 4700 MHz-Km		400				

SRX ENVIRONMENTAL SPECIFICATIONS					
Parameter	Symbol	Min	Тур	Max	Units
Case Operating Temperature	T _{op}	-5		85	°C
Storage Temperature	T _{sto}	-40		85	°C

LR OPTICAL CHARACTERISTICS

Optical Characteristics for RS0 = HIGH (10 Gb Operation) (T_{OP} = 0 °C to 70 °C, V_{CC} =3.14 Vdc to 3.46 Vdc)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Transmitter						
Optical Modulation amplitude (OMA)	P _{OMA}	-5.2			dBm	
Average Launch Power	P _{AVE}	-8.2		0.5	dBm	1
Optical Wave Length	λ	1260		1355	nm	
Side-mode Suppresion Ratio	RIN	30			dB	
Optical Extinction Ratio	ER	3.5			dB	
Transmitter and Dispersion Penalty	TDP			3.2	dB	
Average Launch Power of OFF Transmitter	P _{OFF}			-30	dBm	
Tx Jitter	Tx		Per IEEE 8	Per IEEE 802.3-2008 Requirements		
Relative Insensity Noise	RIN			-128	dB/Hz	
Receiver						
Receiver Sensitivity (OMA) @ 10.3 Gb/s	R _{SENS1}			-12.6	dBm	2
Stressed Receiver Sensitivity (OMA) 10.3 Gb/s	R _{SENS2}			-10.3	dBm	3
Average Receiver Power	P _{AVE}	-14.2		0.5	dB	
Optical Center Wavelength	λ _C	1260		1600	nm	
Receiver Reflectance	R _{rx}			-12	dB	
LOS De-Assert	LOS _D			-17	dBm	
LOS Assert	LOS _A	-30	-23		dBm	
Loss Hysteresis		0.5			dB	
Notos						

Notes:

- 1. Average power figures are informative only, per IEEE 802.3-2008.
- 2. Valid between 1260 and 1355 nm. Measured with worst ER; BER<10 $^{-12}$; 2^{31} 1 PRBS.
- 3. Valid between 1260 and 1355 nm. Per IEEE 802.3-2008

LR GENERAL SPECIFICATIONS						
Parameter	Symbol	Min	Тур	Max	Unit	Note
Bit Rate (RSO = LOW)	BR		1.25		Gb/s	1
Bit Rate (RSO = HIGH)	BR	9.95	10.3		Gb/s	2
Maximum Supported Link Length	L _{MAX}		10		Km	

Notes:

- 1. 1000BASE-LX. Tested with a $2^7 1$ PRBS. (Transceiver data rate selected through the 2-wire bus in accordance with SFF-8472 Rev. 10.3. Soft RSO is set at Bit3, Byte 110, Address A2h. Soft RSO default state on power up is 0 LOW, and the state is reset following a power cycle. Writing 1 HIGH selects max. data rate operation. Transceiver data rate is the logic OR of the input state of the RSO pin and soft RSO bit. Thus, if either the RSO pin OR the soft RSO bit is HIGH, then the selected data rate will be 9.95 and 10.3 Gb/s. Conversely, to select data rate 1.25 Gb/s, both the RSO pin and the soft RSO bit are set LOW.)
- 2. 10GBASE-LR/LW. Tested with a 231 1 PRBS. (See note above for conditions.)

LR ENVIRONMENTAL SPECIFICATIONS

Transceivers have an operating temperature range from -5 °C to +70 °C case temperature

Parameter	Symbol	Min	Тур	Max	Units
Case Operating Temperature	T _{op}	-5		70	°C
Storage Temperature	T _{sto}	-40		85	°C

INTEL [®] ETHERNET SFP+ OPTIC PRODUCT CODES								
Configuration	Product Code	Intel Order Numbers (Retail / OEM Generic)						
SR Optic	E10GSFPSR	903239/909923						
SRX Optic ¹	E10GSFPSRX	954746						
LR Optic	E10GSFPLR	903240/903240						

¹Extended temp

Note: Other brands of SFP+ optical modules will not work with the Intel® Ethernet Converged Network Adapter X520 Series.

Note: When two Intel® Ethernet Converged Network Adapter X520 Series SFP+ devices are connected back to back, they should be configured with the same Speed/Duplex setting. Results may vary if speed settings are mixed.

Regulatory Compliance

Transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available from Intel Corporation upon request.

For Product Information

For information about all Intel® Ethernet Products, visit: intel.com/ethernet

Warranty

Intel limited lifetime hardware warranty, 90-day money-back guarantee (U.S. and Canada) and worldwide support.

Customer Support

For customer support options in North America visit: intel.com/content/www/us/en/support/contact-support.html

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications. Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands maybe claimed as the property of others.

Copyright ©2017, Intel Corporation. All Rights Reserved.

